Computing Sphere Eversions

نویسندگان

  • George Francis
  • John M. Sullivan
چکیده

We consider several tools for computing and visualizing sphere eversions. First, we discuss a family of rotationally symmetric eversions driven computationally by minimizing the Willmore bending energy. Next, we describe programs to compute and display the double locus of an immersed surface and to track this along a homotopy. Finally, we consider ways to implement computationally the various eversions originally drawn by hand; this requires interpolation of splined curves in time and space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphere Eversions: from Smale through “the Optiverse”

For decades, the sphere eversion has been a favorite subject for mathematical visualization. The 1998 video The Optiverse shows minimax eversions, computed automatically by minimizing elastic bending energy using Brakke’s Evolver. We contrast these geometrically optimal eversions with earlier ones, including those by Morin, Phillips,

متن کامل

“the Optiverse” and Other Sphere Eversions

For decades, the sphere eversion has been a classic subject for mathematical visualization. The 1998 video The Optiverse shows geometrically optimal eversions created by minimizing elastic bending energy. We contrast these minimax eversions with earlier ones, including those by Morin, Phillips, Max, and Thurston. The minimax eversions were automatically generated by flowing downhill in energy u...

متن کامل

The Minimax Sphere Eversion

We consider an eversion of a sphere driven by a gradient flow for elastic bending energy. We start with a halfway model which is an unstable Willmore sphere with 4-fold orientation-reversing rotational symmetry. The regular homotopy is automatically generated by flowing down the gradient of the energy from the halfway model to a round sphere, using the Surface Evolver. This flow is not yet full...

متن کامل

Sphere Eversions and Realization of Mappings

any (continuous) map N → M between stably parallelizable compact n-manifolds, n 6= 1, 2, 3, 7, is realizable in R, i.e. the composition of f with an embedding M ⊂ R is C-approximable by embeddings. It has been long believed that any degree 2 map S → S, obtained by capping off at infinity a time-symmetric (e.g. Shapiro’s) sphere eversion S×I → R, was non-realizable in R. We show that there exist...

متن کامل

Regular Homotopy and Total Curvature

We consider properties of the total absolute geodesic curvature functional on circle immersions into a Riemann surface. In particular, we study its behavior under regular homotopies, its infima in regular homotopy classes, and the homotopy types of spaces of its local minima. We also consider the total curvature functional on the space of 2-sphere immersions into 3-space in a similar spirit. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998